Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7QBT_1)}(2) \setminus P_{f(3UDK_1)}(2)|=81\),
\(|P_{f(3UDK_1)}(2) \setminus P_{f(7QBT_1)}(2)|=87\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101001010001111100101010101110111011100011000001001001011100001110010000000100000110010111000100101001010010101110100010100110110010011011000101100100111010011001010111001110100100101010101100100000101111111110010110001001001110111110110100011110001111110100100100110001000101010101100111101111001101110110100010110101110010011011110101111000110110100101101001000111110111001010011000110011001100101010101110000110101001001110100111110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{840
}{\log_{20}
840}-\frac{404}{\log_{20}404})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7QBT_1
3UDK_1
144
142
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]