Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7PZZ_1)}(2) \setminus P_{f(2WVC_1)}(2)|=154\),
\(|P_{f(2WVC_1)}(2) \setminus P_{f(7PZZ_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001000000110010101001010110110100100101101110001001011011101100000010111000110001011001000011011010100111010010101101010011101000111101101101001000000010110111001100100001010000100011110101111110101010001010010000011111011010111111111011001011000000010110111111001100100010011000000100111111011100001011111100100100010000110000011001110100110110000111101000110100100110110111000011101011111110110111000111000110110010111011101010001001001110100000100010010011000100110111000010000
Pair
\(Z_2\)
Length of longest common subsequence
7PZZ_1,2WVC_1
186
3
7PZZ_1,3FDZ_1
176
3
2WVC_1,3FDZ_1
166
3
Newick tree
[
7PZZ_1:92.91,
[
3FDZ_1:83,2WVC_1:83
]:9.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{628
}{\log_{20}
628}-\frac{148}{\log_{20}148})=138.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7PZZ_1
2WVC_1
177
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]