Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7PTM_1)}(2) \setminus P_{f(5NFH_1)}(2)|=51\),
\(|P_{f(5NFH_1)}(2) \setminus P_{f(7PTM_1)}(2)|=123\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111111101001010100111101101100101011111101001001010100010111010101100010001000000010111000001000011001010101101101000001110001011100110111110001011101000111001010001100110101011001011110010000010101001100001110110010011000101110011101111011111111000010000011111111100101011100100010
Pair
\(Z_2\)
Length of longest common subsequence
7PTM_1,5NFH_1
174
3
7PTM_1,6UFW_1
174
3
5NFH_1,6UFW_1
202
4
Newick tree
[
6UFW_1:96.55,
[
7PTM_1:87,5NFH_1:87
]:9.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{820
}{\log_{20}
820}-\frac{284}{\log_{20}284})=146.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7PTM_1
5NFH_1
185
140
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]