Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7PKW_1)}(2) \setminus P_{f(7DGM_1)}(2)|=99\),
\(|P_{f(7DGM_1)}(2) \setminus P_{f(7PKW_1)}(2)|=50\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001101010101000001011010000000100010001010101100100001010010010011101010101001001100011010101100010000110000000000110110111000010001011111011000011010000010101000100000001001101110000000001011100111110001001000010000101110101010111000000101010000000010010001110010000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{421
}{\log_{20}
421}-\frac{153}{\log_{20}153})=79.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
7PKW_1
7DGM_1
100
78
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]