Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7PCD_1)}(2) \setminus P_{f(5PUN_1)}(2)|=129\),
\(|P_{f(5PUN_1)}(2) \setminus P_{f(7PCD_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011110011101100001001011101111010011111010010111110110000010100011001011111101010011110100010110011101011001000010110001101010110110010010110001110011100100101001111011010000001011011101111001100010000011001101101101110100111100110110010011011100101011110011100000101001100100110010011110000111101100010001100001101101000111001
Pair
\(Z_2\)
Length of longest common subsequence
7PCD_1,5PUN_1
184
3
7PCD_1,5RBZ_1
172
4
5PUN_1,5RBZ_1
182
3
Newick tree
[
5PUN_1:93.26,
[
7PCD_1:86,5RBZ_1:86
]:7.26
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{483
}{\log_{20}
483}-\frac{156}{\log_{20}156})=96.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
7PCD_1
5PUN_1
121
87.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]