Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7OSI_1)}(2) \setminus P_{f(5FLK_1)}(2)|=105\),
\(|P_{f(5FLK_1)}(2) \setminus P_{f(7OSI_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101010100001110111110111011100100111010100010111100010101001101000111110001010011101101110100100110010110011111111001010000101111111101000101110010101110000010110111101101100010010011010000100101011001001100111000011001000000101110000101010000000001111001000010101100100100110011011010111100011001000010000111010110000010101111000010011000001010101001000111000001110110010001001111010101110010101101100111110011100001110110001100000100
Pair
\(Z_2\)
Length of longest common subsequence
7OSI_1,5FLK_1
176
3
7OSI_1,1SXP_1
213
3
5FLK_1,1SXP_1
183
2
Newick tree
[
1SXP_1:10.76,
[
7OSI_1:88,5FLK_1:88
]:14.76
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{736
}{\log_{20}
736}-\frac{300}{\log_{20}300})=119.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7OSI_1
5FLK_1
155
128.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]