CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
7ORC_1 5DWQ_1 6VWI_1 Letter Amino acid
57 14 57 R Arginine
43 11 17 M Methionine
71 13 50 P Proline
64 20 55 T Threonine
40 16 48 Y Tyrosine
93 26 45 A Alanine
55 18 45 D Aspartic acid
89 20 58 I Isoleucine
124 31 75 L Leucine
54 11 68 N Asparagine
42 3 39 C Cysteine
52 24 30 F Phenylalanine
10 4 14 W Tryptophan
83 17 55 K Lycine
83 27 63 S Serine
89 26 53 V Valine
51 20 27 Q Glutamine
90 18 81 E Glutamic acid
109 20 55 G Glycine
39 10 17 H Histidine

7ORC_1|Chains A, B|Aldehyde oxidase|Homo sapiens (9606)
>5DWQ_1|Chains A, B, C, D|Histone-arginine methyltransferase CARM1|Homo sapiens (9606)
>6VWI_1|Chains A, B|Leucine-zippered human type 1 insulin-like growth factor receptor ectodomain|Homo sapiens (9606)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
7ORC , Knot 485 1338 0.87 40 347 1188
MDRASELLFYVNGRKVIEKNVDPETMLLPYLRKKLRLTGTKYGCGGGGCGACTVMISRYNPITKRIRHHPANACLIPICSLYGAAVTTVEGIGSTHTRIHPVQERIAKCHGTQCGFCTPGMVMSIYTLLRNHPEPTLDQLTDALGGNLCRCTGYRPIIDACKTFCKTSGCCQSKENGVCCLDQGINGLPEFEEGSKTSPKLFAEEEFLPLDPTQELIFPPELMIMAEKQSQRTRVFGSERMMWFSPVTLKELLEFKFKYPQAPVIMGNTSVGPEVKFKGVFHPVIISPDRIEELSVVNHAYNGLTLGAGLSLAQVKDILADVVQKLPEEKTQMYHALLKHLGTLAGSQIRNMASLGGHIISRHPDSDLNPILAVGNCTLNLLSKEGKRQIPLNEQFLSKCPNADLKPQEILVSVNIPYSRKWEFVSAFRQAQRQENALAIVNSGMRVFFGEGDGIIRELCISYGGVGPATICAKNSCQKLIGRHWNEQMLDIACRLILNEVSLLGSAPGGKVEFKRTLIISFLFKFYLEVSQILKKMDPVHYPSLADKYESALEDLHSKHHCSTLKYQNIGPKQHPEDPIGHPIMHLSGVKHATGEAIYCDDMPLVDQELFLTFVTSSRAHAKIVSIDLSEALSMPGVVDIMTAEHLSDVNSFCFFTEAEKFLATDKVFCVGQLVCAVLADSEVQAKRAAKRVKIVYQDLEPLILTIEESIQHNSSFKPERKLEYGNVDEAFKVVDQILEGEIHMGGQEHFYMETQSMLVVPKGEDQEMDVYVSTQFPKYIQDIVASTLKLPANKVMCHVRRVGGAFGGKVLKTGIIAAVTAFAANKHGRAVRCVLERGEDMLITGGRHPYLGKYKAGFMNDGRILALDMEHYSNAGASLDESLFVIEMGLLKMDNAYKFPNLRCRGWACRTNLPSNTAFRGFGFPQAALITESCITEVAAKCGLSPEKVRIINMYKEIDQTPYKQEINAKNLIQCWRECMAMSSYSLRKVAVEKFNAENYWKKKGLAMVPLKFPVGLGSRAAGQAAALVHIYLDGSVLVTHGGIEMGQGVHTKMIQVVSRELRMPMSNVHLRGTSTETVPNANISGGSVVADLNGLAVKDACQTLLKRLEPIISKNPKGTWKDWAQTAFDESINLSAVGYFRGYESDMNWEKGEGQPFEYFVYGAACSEVEIDCLTGDHKNIRTDIVMDVGCSINPAIDIGQIEGAFIQGMGLYTIEELNYSPQGILHTRGPDQYKIPAICDMPTELHIALLPPSQNSNTLYSSKGLGESGVFLGCSVFFAIHDAVSAARQERGLHGPLTLNSPLTPEKIRMACEDKFTKMIPRDEPGSYVPWNVPI
5DWQ , Knot 153 349 0.85 40 209 344
SIARSVFSERTEESSAVQYFQFYGYLSQQQNMMQDYVRTGTYQRAILQNHTDFKDKIVLDVGCGSGILSFFAAQAGARKIYAVEASTMAQHAEVLVKSNNLTDRIVVIPGKVEEVSLPEQVDIIISEPMGYMLFNERMLESYLHAKKYLKPSGNMFPTIGDVHLAPFTDEQLYMEQFTKANFWYQPSFHGVDLSALRGAAVDEYFRQPVVDTFDIRILMAKSVKYTVNFLEAKEGDLHRIEIPFKFHMLHSGLVHGLAFWFDVAFIGSIMTVWLSTAPTEPLTHWYQVRCLFQSPLFAKAGDTLSGTCLLIANKRQSYDISIVAQVDQTGSKSSNLLDLKNPFFRYTGT
6VWI , Knot 356 952 0.85 40 327 854
EICGPGIDIRNDYQQLKRLENCTVIEGYLHILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYNYALVIFEMTNLKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDAVSNNYIVGNKPPKECGDLCPGTMEEKPMCEKTTINNEYNYRCWTTNRCQKMCPSTCGKRACTENNECCHPECLGSCSAPDNDTACVACRHYYYAGVCVPACPPNTYRFEGWRCVDRDFCANILSAESSDSEGFVIHDGECMQECPSGFIRNGSQSMYCIPCEGPCPKVCEEEKKTKTIDSVTSAQMLQGCTIFKGNLLINIRRGNNIASELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRLILGEEQLEGNYSFYVLDNQNLQQLWDWDHRNLTIKAGKMYFAFNPKLCVSEIYRMEEVTGTKGRQSKGDINTRNNGERASCESDVLHFTSTTTSKNRIIITWHRYRPPDYRDLISFTVYYKEAPFKNVTEYDGQDACGSNSWNMVDVDLPPNKDVEPGILLHGLKPWTQYAVYVKAVTLTMVENDHIRGAKSEILYIRTNASVPSIPLDVLSASNSSSQLIVKWNPPSLPNGNLSYYIVRWQRQPQDGYLYRHNYCSKDKIPIRKYADGTIDIEEVTENPKTEVCGGEKGPCCACPKTEAEKQAEKEEAEYRKVFENFLHNSIFVPRPERKRRDVMQVANTTMSSRSRNTTAADTYNITDPEELETEYPFFESRVDNKERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMPAEGADDIPGPVTWEPRPENSIFLKWPEPENPNGLILMYEIKYGSQVEDQRECVSRQEYRKYGGAKLNRLNPGNYTARIQATSLSGNGSWTDPVFFYVQAKTGYENFIHRMKQLEDKVEELLSKNYHLENEVARLKKLVGERSSSEQKLISEEDLN

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(7ORC_1)}(2) \setminus P_{f(5DWQ_1)}(2)|=159\), \(|P_{f(5DWQ_1)}(2) \setminus P_{f(7ORC_1)}(2)|=21\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100111010100110001010011110100010101000101111011001110000110001000110101111001011110010111000001011000110001000110011111010011000101010010011110100001001110100010000100000001100100110111010010000101110001111010001111101111100000000111000111101101001101010010111111000111010101110111101001001011001001101111101101001110110011000001001110011011100100110111011000100010111111000101100010001110001100010101010011101011000010110110010000011111001101111010111001010011111101010000001110010001101100111001011101111010100011101110101010011001011001011000001100100000000100001110001001110111010110010101100001111000111011000010101101010011011111011010010010010110010011100011011011011110001010011001011000101111010001000001010001001010011011001101010111000101000011111010000101010001100100111001011100110010011111110110011111101111000101100110010011101100101100011110010111101000001110100011110111101001001101000111000011000110111110111100001001110011010010110100010001000010100110010001110000100111001010001000111111101111110011101111101010101110011101101100011011000101110010101000001101010110111010111100100011001011100010101001100110001010111010100001010010101100110111000101001010000100011101100101110110101111011110010010001011100011000011110011001011111100000010000111001111100111110011011000011011101001101001011000010011100011001110111
Pair \(Z_2\) Length of longest common subsequence
7ORC_1,5DWQ_1 180 4
7ORC_1,6VWI_1 90 5
5DWQ_1,6VWI_1 176 4

Newick tree

 
[
	5DWQ_1:99.43,
	[
		7ORC_1:45,6VWI_1:45
	]:54.43
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1687 }{\log_{20} 1687}-\frac{349}{\log_{20}349})=341.\)
Status Protein1 Protein2 d d1/2
Query variables 7ORC_1 5DWQ_1 440 275
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]