Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7ORC_1)}(2) \setminus P_{f(5DWQ_1)}(2)|=159\),
\(|P_{f(5DWQ_1)}(2) \setminus P_{f(7ORC_1)}(2)|=21\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100111010100110001010011110100010101000101111011001110000110001000110101111001011110010111000001011000110001000110011111010011000101010010011110100001001110100010000100000001100100110111010010000101110001111010001111101111100000000111000111101101001101010010111111000111010101110111101001001011001001101111101101001110110011000001001110011011100100110111011000100010111111000101100010001110001100010101010011101011000010110110010000011111001101111010111001010011111101010000001110010001101100111001011101111010100011101110101010011001011001011000001100100000000100001110001001110111010110010101100001111000111011000010101101010011011111011010010010010110010011100011011011011110001010011001011000101111010001000001010001001010011011001101010111000101000011111010000101010001100100111001011100110010011111110110011111101111000101100110010011101100101100011110010111101000001110100011110111101001001101000111000011000110111110111100001001110011010010110100010001000010100110010001110000100111001010001000111111101111110011101111101010101110011101101100011011000101110010101000001101010110111010111100100011001011100010101001100110001010111010100001010010101100110111000101001010000100011101100101110110101111011110010010001011100011000011110011001011111100000010000111001111100111110011011000011011101001101001011000010011100011001110111
Pair
\(Z_2\)
Length of longest common subsequence
7ORC_1,5DWQ_1
180
4
7ORC_1,6VWI_1
90
5
5DWQ_1,6VWI_1
176
4
Newick tree
[
5DWQ_1:99.43,
[
7ORC_1:45,6VWI_1:45
]:54.43
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1687
}{\log_{20}
1687}-\frac{349}{\log_{20}349})=341.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7ORC_1
5DWQ_1
440
275
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]