Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7OQY_1)}(2) \setminus P_{f(8GVA_1)}(2)|=47\),
\(|P_{f(8GVA_1)}(2) \setminus P_{f(7OQY_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000110110111101001001010111000100001011011110101111011000110100111011011010110111011010010011000010010101000010000010011010110110011001001010010010010001010100100100000101101010010001001100010111001000010111101111111010101010011010001000110110100010001011110111001101100011001000111111100001011001100101001010101010010101001101010101001111001101101100100101001000110110011110011010100101001000001100101101100011010111100010100101110010111100101011001100101010010101100001110100111100011010011111111000101101101000110100110111100111011011111101000100110111100101011101001101000010100011110011110111000111000100110101000100010111001101110110101101010010110010001000100100010001001001010111100100010001100100100111011000101100101111011010010100101111000101001001000001011001011101011100011011010011101111001110011000001010001101100101000101001010110110100110110010000101001100111100
Pair
\(Z_2\)
Length of longest common subsequence
7OQY_1,8GVA_1
102
5
7OQY_1,3OXA_1
237
3
8GVA_1,3OXA_1
231
4
Newick tree
[
3OXA_1:13.86,
[
7OQY_1:51,8GVA_1:51
]:80.86
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2121
}{\log_{20}
2121}-\frac{880}{\log_{20}880})=299.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7OQY_1
8GVA_1
376
323.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]