Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7OKR_1)}(2) \setminus P_{f(1PJG_1)}(2)|=227\),
\(|P_{f(1PJG_1)}(2) \setminus P_{f(7OKR_1)}(2)|=1\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001010010111111100111010111001010000001011110001100100011000111111000011101100001101011100101001100100110110001000110100000101110101100100101010010001011101101011001101111000000101011100100111000100001110110000011101110011111011011100001100110111110010010100101011000010111010001010101110100100011111110001000100010101001111010100010110101011101110100010000100100010001101110110010011001011110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{405
}{\log_{20}
405}-\frac{10}{\log_{20}10})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7OKR_1
1PJG_1
168
85.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]