Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7OGU_1)}(2) \setminus P_{f(4BUU_1)}(2)|=105\),
\(|P_{f(4BUU_1)}(2) \setminus P_{f(7OGU_1)}(2)|=70\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010000111100101010010001001000010100101100110100100101001011111101100100110101000010001110111000100101000110101100110110110101010010101110110100101101100110101111110100101101000110100111011010010111100001110110011010011010111001110111011110011010100001010111011010010110101001010110010011100101000010101110111010100101110010111100111001101101000010101110101010100111100010111100110000100101100010101101111110101101100010101000111100101111000010101100110100100101010010101100110110110101010010101001100100100101100010101100110101100101010110101110100101001010000101011101100100001110111010101101000010001011010001010
Pair
\(Z_2\)
Length of longest common subsequence
7OGU_1,4BUU_1
175
6
7OGU_1,2VDV_1
174
5
4BUU_1,2VDV_1
181
6
Newick tree
[
4BUU_1:89.67,
[
7OGU_1:87,2VDV_1:87
]:2.67
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{857
}{\log_{20}
857}-\frac{240}{\log_{20}240})=169.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7OGU_1
4BUU_1
196
139
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]