Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7NAN_1)}(2) \setminus P_{f(5WWL_1)}(2)|=67\),
\(|P_{f(5WWL_1)}(2) \setminus P_{f(7NAN_1)}(2)|=77\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111101100111100011100110100000011010001111011011001011001000101001001001010111010000110010000100101111100000111100100111110111110101111010110000010100001101100010010001110110101011000110010010110010
Pair
\(Z_2\)
Length of longest common subsequence
7NAN_1,5WWL_1
144
4
7NAN_1,4OUJ_1
168
3
5WWL_1,4OUJ_1
172
3
Newick tree
[
4OUJ_1:88.91,
[
7NAN_1:72,5WWL_1:72
]:16.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{416
}{\log_{20}
416}-\frac{201}{\log_{20}201})=63.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
7NAN_1
5WWL_1
82
78.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]