Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7MSD_1)}(2) \setminus P_{f(3NEZ_1)}(2)|=124\),
\(|P_{f(3NEZ_1)}(2) \setminus P_{f(7MSD_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00100000100100100000011111010100001011111011000101000000101011000101010001000110000000011111110011101101101001000110101100101010010111010000110110100001111111101000011010001110011001100010110100001101100000001000001110001011010000100001001011101110000001110101101000100101000010111010000001101010001100111110011010110101001001000010000011110000100000111110001011010010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{612
}{\log_{20}
612}-\frac{244}{\log_{20}244})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7MSD_1
3NEZ_1
134
110.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]