Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7LZD_1)}(2) \setminus P_{f(1SJQ_1)}(2)|=137\),
\(|P_{f(1SJQ_1)}(2) \setminus P_{f(7LZD_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001111011111001100100100100010010110010110001010000000000010010000011000001010110100010011110000001010000000100000101011100001111011001100011100010110000101010001000010001111000011010001000011000001000000101010101111000111010010100010001001000101010001011100010101111010000000
Pair
\(Z_2\)
Length of longest common subsequence
7LZD_1,1SJQ_1
172
3
7LZD_1,7UHR_1
190
3
1SJQ_1,7UHR_1
174
3
Newick tree
[
7UHR_1:92.72,
[
7LZD_1:86,1SJQ_1:86
]:6.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{383
}{\log_{20}
383}-\frac{105}{\log_{20}105})=85.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
7LZD_1
1SJQ_1
110
74
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]