Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7LRV_1)}(2) \setminus P_{f(4WCU_1)}(2)|=27\),
\(|P_{f(4WCU_1)}(2) \setminus P_{f(7LRV_1)}(2)|=161\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010001001000101100100110100110010111101001011010000100101101001100111010011011001010010111001000000000000
Pair
\(Z_2\)
Length of longest common subsequence
7LRV_1,4WCU_1
188
4
7LRV_1,1DOH_1
182
4
4WCU_1,1DOH_1
178
3
Newick tree
[
7LRV_1:93.65,
[
1DOH_1:89,4WCU_1:89
]:4.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{465
}{\log_{20}
465}-\frac{106}{\log_{20}106})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7LRV_1
4WCU_1
134
86.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]