Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7LCZ_1)}(2) \setminus P_{f(9EIW_1)}(2)|=48\),
\(|P_{f(9EIW_1)}(2) \setminus P_{f(7LCZ_1)}(2)|=134\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000010010011001111100100110010001000111011100010101010010110001000000011001100110110100000010000110111001100001000011011110111100000010010001011101010111000001110011111111110000010001011111111000101011001010110111000010111000110101000011001111100000010011110101011100001000110010110110011001011100111011011100
Pair
\(Z_2\)
Length of longest common subsequence
7LCZ_1,9EIW_1
182
4
7LCZ_1,4NVH_1
182
4
9EIW_1,4NVH_1
174
3
Newick tree
[
7LCZ_1:92.29,
[
9EIW_1:87,4NVH_1:87
]:5.29
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{931
}{\log_{20}
931}-\frac{309}{\log_{20}309})=167.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7LCZ_1
9EIW_1
213
156.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]