Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7KXG_1)}(2) \setminus P_{f(4FSF_1)}(2)|=47\),
\(|P_{f(4FSF_1)}(2) \setminus P_{f(7KXG_1)}(2)|=98\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010000000101000111111011101100101000001011000100110111111001001010000000010111000010010111111001000111110110001101110111000010001100000111001011111001110010010000110110000010110010101000101110010111101001100111001101110100011101101100111000000100100010010011100001111001101111100101011100100001101001100001011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{846
}{\log_{20}
846}-\frac{310}{\log_{20}310})=145.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7KXG_1
4FSF_1
186
145
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]