Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7KRC_1)}(2) \setminus P_{f(4PTS_1)}(2)|=103\),
\(|P_{f(4PTS_1)}(2) \setminus P_{f(7KRC_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110110011101011101101001110000101110100010001010011100100011111000000010011010010000001101011110111100000101101101010111000100001101101000011100000111011010111100010011011110010111000100101100101100000100100011011100100000001111111001010010101111100001010010011101011001011101001001101001100111100010101100001100110110001000111010001010100010001100100100101011000010010011001000011111001010111000010011000101011101011001111011001000111110010101110000011011010001000111100000000010110111000110101100000111110101000000110011001100001011111100111100010011011
Pair
\(Z_2\)
Length of longest common subsequence
7KRC_1,4PTS_1
158
4
7KRC_1,7OOF_1
168
3
4PTS_1,7OOF_1
152
4
Newick tree
[
7KRC_1:83.30,
[
4PTS_1:76,7OOF_1:76
]:7.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{905
}{\log_{20}
905}-\frac{348}{\log_{20}348})=149.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7KRC_1
4PTS_1
190
152.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]