Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7KPR_1)}(2) \setminus P_{f(3NPC_1)}(2)|=90\),
\(|P_{f(3NPC_1)}(2) \setminus P_{f(7KPR_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100111011010101111000010001001101111100000111101010110110000000010001101000111100010000000000110101101000000011000010110101101111110011000100010011011000111110011001000110000100110101111111010011001100001100011111100110010101000000001011001111101110101101110011110010111100010100000010011110101110010010110010000110011000101011100010000101111010100101110111001110001010000101011100110101001000001000111110011101100001101100111000100100001110011101011100011010000110100101011111010010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{850
}{\log_{20}
850}-\frac{364}{\log_{20}364})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7KPR_1
3NPC_1
165
145.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]