Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7KID_1)}(2) \setminus P_{f(1LJY_1)}(2)|=111\),
\(|P_{f(1LJY_1)}(2) \setminus P_{f(7KID_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000111111111100100100100110110011111001101101111010100011001100011100000111010010011110101110100010010000011110010111011111111110000000110110001001000011110111111001000110011000000001000011110010010000001111101110110001100111011011111001110000111110010001110110101011101000000001000100100100001110100111010000100110111001000000110001100000001100011001100000001011111111011110101011001000101011000101110100101001100101100010011110010111001110110001010010110011000110111000011111000010001010000000101010110110100100101101010100100011100000001011101001101111010011000101010100001111011111111001101001001010110000000110011101110011001010000111
Pair
\(Z_2\)
Length of longest common subsequence
7KID_1,1LJY_1
152
4
7KID_1,8YFM_1
232
4
1LJY_1,8YFM_1
182
4
Newick tree
[
8YFM_1:11.09,
[
7KID_1:76,1LJY_1:76
]:36.09
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1006
}{\log_{20}
1006}-\frac{361}{\log_{20}361})=171.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7KID_1
1LJY_1
220
169
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]