Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7KHO_1)}(2) \setminus P_{f(3AAU_1)}(2)|=145\),
\(|P_{f(3AAU_1)}(2) \setminus P_{f(7KHO_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000001100001110111101111111110110100000010010111000111111111110110001101000111010001110010001110010111111011010111010001111100110010001110001010010100110010111001000110111010011100010010000110010011100100101000111011000001111111011101110001110000000101101111011100011010101110110010111010000001101111110111000001110111001000110010100110101010001101111100001101100000000110110101100001010000110001001111101110110010101101111110111010010010110101111110000110111011100110110010011010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{713
}{\log_{20}
713}-\frac{223}{\log_{20}223})=137.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7KHO_1
3AAU_1
174
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]