Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7KDD_1)}(2) \setminus P_{f(2LMF_1)}(2)|=289\),
\(|P_{f(2LMF_1)}(2) \setminus P_{f(7KDD_1)}(2)|=0\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000110111010101101111100000010010000000000011000010100010000010011000100001001011110000010010011010011010001100010110001001111100001110010101000110100001010000111000001111110100100000000000011110111100000000001011100000000000101000100010011000000100110100100001001110001011010110010000100110010011111000110011010011000011111001001101010000010001011010000100010000010010101011000001010001100100011001001100000000000101011000111111101100001101001100001010000000000100100100100100110101010000101010011101101101000001011001001010111011000111101110111110010100001011001010001100000111110110000100101100001111000000001101011111001000100110011010010010011110101100001011010000010000110100110010000001001000110111101011001101111110111111111111110110111011001111101111111111110110000001010110011101101010010010000001011100000100010011111000100111100000100111111010100010001000101001000010010110010000010001000000001
Pair
\(Z_2\)
Length of longest common subsequence
7KDD_1,2LMF_1
289
3
7KDD_1,8UZU_1
219
4
2LMF_1,8UZU_1
100
2
Newick tree
[
7KDD_1:14.19,
[
8UZU_1:50,2LMF_1:50
]:95.19
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{930
}{\log_{20}
930}-\frac{23}{\log_{20}23})=262.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7KDD_1
2LMF_1
331
169
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]