Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7JPE_1)}(2) \setminus P_{f(4IIB_1)}(2)|=35\),
\(|P_{f(4IIB_1)}(2) \setminus P_{f(7JPE_1)}(2)|=130\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010001101111110100100111000010001001011011110110000100010010111100101101111000111110111001110101110001001100100011100101001001011100100100001000000001110010111000111110111010000101010011101111011100101000011111000110100010101101001110000110100001101001110101011101001010011101100101110000011100011100
Pair
\(Z_2\)
Length of longest common subsequence
7JPE_1,4IIB_1
165
4
7JPE_1,2AHG_1
177
4
4IIB_1,2AHG_1
154
4
Newick tree
[
7JPE_1:88.21,
[
4IIB_1:77,2AHG_1:77
]:11.21
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1142
}{\log_{20}
1142}-\frac{301}{\log_{20}301})=222.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7JPE_1
4IIB_1
279
188
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]