Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7JFL_1)}(2) \setminus P_{f(6OVB_1)}(2)|=40\),
\(|P_{f(6OVB_1)}(2) \setminus P_{f(7JFL_1)}(2)|=142\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001001100111110010101011001001100010010110111001100011111101101110100011100100110011111111011011110011000001110001110010110101100001111011111101101001010010011110110011000110001111011100101110110111100100010101000
Pair
\(Z_2\)
Length of longest common subsequence
7JFL_1,6OVB_1
182
3
7JFL_1,2NRU_1
184
4
6OVB_1,2NRU_1
174
4
Newick tree
[
7JFL_1:92.95,
[
6OVB_1:87,2NRU_1:87
]:5.95
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{790
}{\log_{20}
790}-\frac{213}{\log_{20}213})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7JFL_1
6OVB_1
202
137
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]