Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7HTC_1)}(2) \setminus P_{f(5KHD_1)}(2)|=142\),
\(|P_{f(5KHD_1)}(2) \setminus P_{f(7HTC_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101000110000011100001100001010011011001100010011100011100001001011110101010100011110110100100001011000011100010101010100011110000001001000100001110100101111000000100110100110001111010010101000100100111110011001100001011010000000000110010000001110010100100100000110110101010010010011000100000000
Pair
\(Z_2\)
Length of longest common subsequence
7HTC_1,5KHD_1
173
3
7HTC_1,6VNW_1
181
3
5KHD_1,6VNW_1
106
3
Newick tree
[
7HTC_1:97.52,
[
5KHD_1:53,6VNW_1:53
]:44.52
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{386
}{\log_{20}
386}-\frac{91}{\log_{20}91})=90.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
7HTC_1
5KHD_1
116
74.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]