Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7FUK_1)}(2) \setminus P_{f(2ICE_1)}(2)|=51\),
\(|P_{f(2ICE_1)}(2) \setminus P_{f(7FUK_1)}(2)|=114\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001011100101000010011111011100111010000110111110010000010101100101110101101010000000100110100010001100110101101001100100110001001000011100001101110111000101010111000001110000110100110101000101011011100100101100001010100100011000100000000000000000010110011001000100000100100001001110100001000010000111010001001100100001000111010110001100000011000100000001111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1004
}{\log_{20}
1004}-\frac{362}{\log_{20}362})=170.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7FUK_1
2ICE_1
219
170.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]