Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7FSQ_1)}(2) \setminus P_{f(6UQQ_1)}(2)|=54\),
\(|P_{f(6UQQ_1)}(2) \setminus P_{f(7FSQ_1)}(2)|=115\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011010011001110000010111010010011110110100110111101100110101000111000010011001110010101000110001010000010111110010100110000110011100001001010011110000110110001011010111111100110011101100110001101
Pair
\(Z_2\)
Length of longest common subsequence
7FSQ_1,6UQQ_1
169
3
7FSQ_1,7QHD_1
207
4
6UQQ_1,7QHD_1
160
4
Newick tree
[
7FSQ_1:98.83,
[
6UQQ_1:80,7QHD_1:80
]:18.83
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{480
}{\log_{20}
480}-\frac{195}{\log_{20}195})=83.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
7FSQ_1
6UQQ_1
108
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]