Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7FQJ_1)}(2) \setminus P_{f(7XMV_1)}(2)|=115\),
\(|P_{f(7XMV_1)}(2) \setminus P_{f(7FQJ_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101011111111111011111001001100111111100110000001010010011000111000111110001100000101111100101001001110000100101001111101010110111010110011000111010001001111110001010010001001000010001110101000101100110010101001101000001000000000011010010110000100100001000001100000000110010001001011010110001001111111001010101011101100011000010000010001000101001100010011011110010100110001110100001011101000010100100001100101110100010110010101001011001000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{765
}{\log_{20}
765}-\frac{321}{\log_{20}321})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7FQJ_1
7XMV_1
153
130.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]