Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7ETA_1)}(2) \setminus P_{f(7RGX_1)}(2)|=104\),
\(|P_{f(7RGX_1)}(2) \setminus P_{f(7ETA_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001001000100000111111110100101110110011110100110010011101001110100111011010111100110111001111110010010111010001101101111111010010010001001000101110100001100100110101101111111010111100101100110011100100101110111110100011000101100111111000111001001100100101110001010
Pair
\(Z_2\)
Length of longest common subsequence
7ETA_1,7RGX_1
158
3
7ETA_1,7CJY_1
202
4
7RGX_1,7CJY_1
206
4
Newick tree
[
7CJY_1:10.59,
[
7ETA_1:79,7RGX_1:79
]:29.59
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{404
}{\log_{20}
404}-\frac{138}{\log_{20}138})=80.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
7ETA_1
7RGX_1
99
75
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]