Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7ENR_1)}(2) \setminus P_{f(5PUU_1)}(2)|=187\),
\(|P_{f(5PUU_1)}(2) \setminus P_{f(7ENR_1)}(2)|=19\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100001111011100110111000000110111011001010000100000110010000000100100111000110000010110100101011000100001011110110001100100100001001000001000001100001101010010001010101001000001001001101001000100011000101100000000111010111100100100111100001100100100100101001100100111000000010000010110011000001010011001110000101001000101010010100010010100011001011001101101000000100010010001000010010010100100010101101110011000000111100101110010100000110011001110111000110010110111000111001110110000000100110010000000000100110001000100110010100100100100101111001100110001001110010100010001110000000010001100100000010000100011011010101000000011000010010100011000110000100111011000101001010100101110011000101000000100001001111101011100100100100110001100001001101000000001110100100100100000000100010001100010000000010011100101100000001001100010011100001000001011100010000110000000100100000000111100100010010101010000100000110101010010101001100110100101100000001000000010010010001011101000011010101001111000110010101101000001001000011011001100000100000011101001000001011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1209
}{\log_{20}
1209}-\frac{156}{\log_{20}156})=284.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7ENR_1
5PUU_1
349
200
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]