Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7DYS_1)}(2) \setminus P_{f(1MYI_1)}(2)|=178\),
\(|P_{f(1MYI_1)}(2) \setminus P_{f(7DYS_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100001011110011010111000011101000100001000101011010000010001110111011011110001101110001111100000111001110110110000000010000000001111100000100101101101000000011010000000111100000101000100001010101100010011000110101001101010111011010110000110001100010100010010101010001010000010101000000001111011111101101110000111110100011011100000010110010110110111010011011101101010100100001001111000111111110011010000111101010110110101011110110010111111100001001011100110110100111011010000111111001010011011101110111111000000100000
Pair
\(Z_2\)
Length of longest common subsequence
7DYS_1,1MYI_1
206
4
7DYS_1,8FSO_1
170
4
1MYI_1,8FSO_1
178
5
Newick tree
[
1MYI_1:99.72,
[
7DYS_1:85,8FSO_1:85
]:14.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{671
}{\log_{20}
671}-\frac{153}{\log_{20}153})=148.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7DYS_1
1MYI_1
190
120
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]