Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7DXI_1)}(2) \setminus P_{f(8RJX_1)}(2)|=179\),
\(|P_{f(8RJX_1)}(2) \setminus P_{f(7DXI_1)}(2)|=26\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00100111001001101100110100101100100100000100100000100010010001111001011001011011010000101110011110100110100011001100110100011010001111111010010001011010011111001100110011011000000101001011000001110010111100011010111110001001101110011000010100110000100100100110010010110101010000001000000110000100000100001110011100101101001110111110001101100010001100100010110010011100011100001101001100100010101000010011001001110101100100110000001110101001000011000000001101000111001111011110111010001010100000001111000100110010010001001001000101001000011001100101011100001011100000100100100100000
Pair
\(Z_2\)
Length of longest common subsequence
7DXI_1,8RJX_1
205
4
7DXI_1,6PNE_1
144
4
8RJX_1,6PNE_1
201
4
Newick tree
[
8RJX_1:10.58,
[
7DXI_1:72,6PNE_1:72
]:37.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{763
}{\log_{20}
763}-\frac{182}{\log_{20}182})=162.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7DXI_1
8RJX_1
210
135.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]