Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7DUP_1)}(2) \setminus P_{f(3BVZ_1)}(2)|=137\),
\(|P_{f(3BVZ_1)}(2) \setminus P_{f(7DUP_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111010110101001010110010101010010010111001000100101101000000101011101010111010010100001010100111100110010011100111111000000101101010011010101111001001110001001101111001001010100001101010001010001110000111010101010001110000010011101000110111010111000111110101110010000011100110001101101011011001100100111100101110001000100000000110011000100101010001000110011000001111001101000111001011111110111001100110011010110010000001100110010100010110000110010111010001101011001100101100111101111101110100000000100010001010010110010011010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{771
}{\log_{20}
771}-\frac{237}{\log_{20}237})=147.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7DUP_1
3BVZ_1
187
133.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]