Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7DQV_1)}(2) \setminus P_{f(1BCY_1)}(2)|=103\),
\(|P_{f(1BCY_1)}(2) \setminus P_{f(7DQV_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110010001101001111110001011111111011011011111111101101100000010100100011111111101111100011111100011001011110011000100100001101110100010110001001111110110011111111111111011111101111111110110101000000010101101110110010000110100000000100101100110000100111111011111010111111110111010101101101110111111111011011101001111110111110011000010111011001111001111001010010010101101101011010011111101110001101110100101011111110101110001011000111100011110101000110100010000110110010100111111011000110011110110000111101110010110100000110100011100110011100110011110010011010111110011110010000111111011000110001101010111000000000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{939
}{\log_{20}
939}-\frac{319}{\log_{20}319})=166.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7DQV_1
1BCY_1
203
150.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]