Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7DKU_1)}(2) \setminus P_{f(5QTD_1)}(2)|=115\),
\(|P_{f(5QTD_1)}(2) \setminus P_{f(7DKU_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111010000101000010001011001101111001001101010011100001011111111110110000111001010110000001010010110010100011101101101001010010100100011001101001000000011101110010111100000000111110101001000010101110100111111001010010100110000000011111110100000010100011100111101000101100101001100100011100000001000011101111010101100101111101011110111100100100001100100011110011000001001100100111000001010001110010011011011001011000000001111110100000001010101011111111010001100110010100000101100111110010111100110001111101010010010110010000111100001101000001100010010011001001000001110001110000001010100100101111110110011011000010100001001100010001101000010000000001110011101010110110111000100110010010110100101111011010111000010100110110011101100011000100010110010000010101100101100010001010101101101010000110000000
Pair
\(Z_2\)
Length of longest common subsequence
7DKU_1,5QTD_1
166
4
7DKU_1,4MUR_1
183
6
5QTD_1,4MUR_1
187
3
Newick tree
[
4MUR_1:95.46,
[
7DKU_1:83,5QTD_1:83
]:12.46
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1168
}{\log_{20}
1168}-\frac{369}{\log_{20}369})=209.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7DKU_1
5QTD_1
265
194
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]