Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7DCR_1)}(2) \setminus P_{f(7UAR_1)}(2)|=36\),
\(|P_{f(7UAR_1)}(2) \setminus P_{f(7DCR_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100001000100000100000011010100110000001000001101000000100110000011000010100110000000000010000010000111100000000100000101010001001001001000011000010011110000100101010000001100011100000000111000100010110110000001101001001111000000110010000111111001010000110011001100010101110010011100111011001011110011001010000010001100100111100110000100000111001000011001111110011100101011100101010010011000111011100011010001010100101110011010000011101111101000100000010011001100000111011010110000101101010000011110011000101011001101111000001100110011011000101000110110111100101100100100101110101000010001111101110011011110010110100010010111110001010011011001100101101100110000001110001011011000101111000011101100100001101011001000010001000001010011010010001100000111100000101011011101010100011011110110111010001100011101010100111100000100100011000111000011000111100011101110110011000000100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2132
}{\log_{20}
2132}-\frac{876}{\log_{20}876})=303.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7DCR_1
7UAR_1
388
329.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]