Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7CYF_1)}(2) \setminus P_{f(2FFG_1)}(2)|=153\),
\(|P_{f(2FFG_1)}(2) \setminus P_{f(7CYF_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110011001110100101111111111111100111101100111111100111011111000010011111110111111111110101101101001011101111111010011111001000010001111110111011111011111010100000001110100010001111100100000100000010000100001011111000101111011111111111001001001100111011101111111101100110100110101100111111011111111111001011011111111111100001011101011110101010110001110111111011111111001111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{461
}{\log_{20}
461}-\frac{87}{\log_{20}87})=113.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7CYF_1
2FFG_1
139
85.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]