Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7CIT_1)}(2) \setminus P_{f(3MZD_1)}(2)|=67\),
\(|P_{f(3MZD_1)}(2) \setminus P_{f(7CIT_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100001010100000111111010001000011000001110000010001000101111000111010011001000101101010100010101111011110100001011011111001011101010000010001110110110010100111101001110001001100010110110100010111110110110100111110010100111010000100101101101011010001011001011011000100010110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{644
}{\log_{20}
644}-\frac{281}{\log_{20}281})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7CIT_1
3MZD_1
129
113.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]