Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7CHN_1)}(2) \setminus P_{f(4LLD_1)}(2)|=138\),
\(|P_{f(4LLD_1)}(2) \setminus P_{f(7CHN_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000101010100110011011000110110000010110010100100001000000110100100000011010000100001011100101010011000001011000001001101100100011100010110111101110110111100101000011000011010011101100100000010000010100011011011001001001100110010010111010001011011000100110001000100010110111010101001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{393
}{\log_{20}
393}-\frac{111}{\log_{20}111})=86.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
7CHN_1
4LLD_1
112
75
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]