Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7BZF_1)}(2) \setminus P_{f(4GEO_1)}(2)|=123\),
\(|P_{f(4GEO_1)}(2) \setminus P_{f(7BZF_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010100110010110110101010100001100110100001111101100000010000000011000111000010000000010011000111100011010101011101000010000110110110010010000100111000000000100001001100101101010110010011100101001100111111101000010101001101100011011111000001111110100110100010001001010101100010000101100010010000010010010000110010101110011110011111001110111111001001001111000010100001010011101101110110101110000001011110001110010110100010011100111001001010011110010111000000000110100100111110110001000011010100111001000111110011010100001000000111100000111010010100110100010011110100010000100011001110011011110001011100110010001001011110010000111011011101111000000001000100110001011001110110101011100010100101001101001101010111000100110001001000100010000010001100101010001011110001110100001001111010010011000001110010010000100110010000011100100010110101001111101100110001011100110111010110001000010110101001001000101011010011100000000101010011001001100000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1309
}{\log_{20}
1309}-\frac{367}{\log_{20}367})=244.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7BZF_1
4GEO_1
309
211.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]