Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7BYT_1)}(2) \setminus P_{f(3WIH_1)}(2)|=169\),
\(|P_{f(3WIH_1)}(2) \setminus P_{f(7BYT_1)}(2)|=25\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0011011110001100101011111011001011100000001110110000000110100000110111101100001100101110000000111100000001111111101001011000010101111000000110000010010110100000010100101000010101011011010111110001001111000011110100110100111110100011101000100001101111001101100101011100001101101001110110101101010110001101000010010011000110101101101110110110101001000110011110110100000010101011101110010011101110111010100100010110100001101001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{524
}{\log_{20}
524}-\frac{97}{\log_{20}97})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7BYT_1
3WIH_1
160
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]