Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7AVI_1)}(2) \setminus P_{f(4NCL_1)}(2)|=86\),
\(|P_{f(4NCL_1)}(2) \setminus P_{f(7AVI_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000101101010011010000011100010101111110110110110010001010101100110000010010011011100101101010010011100100110101001000010110101101000110001001000101100100111010101100110010011000011000111001010001101010100110100101101011011001011000100110100111011000000100101101100000101110001100001000111100110110110010010111011011000110010001001100000110010010000000011010010110111111010011000010101100010011010000011010101000000100101000100110010111001000100011000101010010111011000001100111010010110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{944
}{\log_{20}
944}-\frac{457}{\log_{20}457})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7AVI_1
4NCL_1
164
158
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]