Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7AFN_1)}(2) \setminus P_{f(8XSC_1)}(2)|=16\),
\(|P_{f(8XSC_1)}(2) \setminus P_{f(7AFN_1)}(2)|=123\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100111111000110010110001110011101001101101110001101010101110011101101101111111110001000000010011011101101110111011101101000111111001000110111111111011001001111101101100110100101011010010111100111111111110000011100000010010011101010001110111100110011011101111011011000100011101101100000110011000111111101100110010100111100111101011000111000001011111101101101111110100101011011101011100011010110010100101010101111111100000111001011110100000110111111111111110111100110100000100010011010010001011111111010011001100001010011011001011011010111111010111010011001111001001110101111010101011101100010011100111010111100000111000110001111100101000110100110111000111000010111111111011110000111010110110111101010111110001111111010011011011111011000000111011111001101000111010111110101111110111011110011101000011011000101001011101101001100011111001010000011110101100000111100110101001110011001000111111010110010111100111100011101110011011111000101011101101111010101100011000110101101011111100001000110000110100010111110000011111011111010100000111110010111101110100101011001001001100010100101111010011100111000010110111010110000010000001001001101100011001111100011111111001001101101110011111111101111101101001110010010110000010110011110010101010100101101101010101111111110110000101111101110111000010111101010010110001110011110001011000110000101111001111001001101100101110011110100101101110101000001100001010101001000100101001011111011100101111111101110110001100000111111101000100100001011000101100111101111001011011110110010111111100010110011100100000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1698
}{\log_{20}
1698}-\frac{157}{\log_{20}157})=401.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7AFN_1
8XSC_1
282
179
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]