Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZZI_1)}(2) \setminus P_{f(5KCY_1)}(2)|=46\),
\(|P_{f(5KCY_1)}(2) \setminus P_{f(6ZZI_1)}(2)|=115\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010100001001001011001011010101001001010011010000011110001101001111101110111001010101010000100000101011100111110111001001011011011101100000001010010110101001100111000111111011111011110011110001100111001111110000011011011011001000100101010101
Pair
\(Z_2\)
Length of longest common subsequence
6ZZI_1,5KCY_1
161
4
6ZZI_1,4NPA_1
158
4
5KCY_1,4NPA_1
159
6
Newick tree
[
5KCY_1:80.33,
[
6ZZI_1:79,4NPA_1:79
]:1.33
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{660
}{\log_{20}
660}-\frac{241}{\log_{20}241})=117.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZZI_1
5KCY_1
149
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]