Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZUJ_1)}(2) \setminus P_{f(8YLA_1)}(2)|=78\),
\(|P_{f(8YLA_1)}(2) \setminus P_{f(6ZUJ_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010001011010010101000101011100011001010011100011000101010111011001110110001011100001001011001101011110111100110000111010110110001000000011001000001111010001111110101110110011110111111111111111110101101010101101001000000010101110101100110110001110011110011001101000010010011100101110101111111110001001010100101110110101000101100100110000101000000
Pair
\(Z_2\)
Length of longest common subsequence
6ZUJ_1,8YLA_1
166
4
6ZUJ_1,1ODV_1
173
3
8YLA_1,1ODV_1
213
3
Newick tree
[
1ODV_1:10.25,
[
6ZUJ_1:83,8YLA_1:83
]:18.25
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{685
}{\log_{20}
685}-\frac{339}{\log_{20}339})=95.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZUJ_1
8YLA_1
120
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]