Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZQQ_1)}(2) \setminus P_{f(2DNW_1)}(2)|=119\),
\(|P_{f(2DNW_1)}(2) \setminus P_{f(6ZQQ_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000111100111100110100011111110001011101000001010100010001110010110110010000101101101001100101001000011111000000101010101100000111011001100010110110001010001110011001001101110010110100100000001101000000011010
Pair
\(Z_2\)
Length of longest common subsequence
6ZQQ_1,2DNW_1
164
3
6ZQQ_1,4ALL_1
156
6
2DNW_1,4ALL_1
150
4
Newick tree
[
6ZQQ_1:81.63,
[
4ALL_1:75,2DNW_1:75
]:6.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{311
}{\log_{20}
311}-\frac{99}{\log_{20}99})=66.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZQQ_1
2DNW_1
86
62
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]