Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZPU_1)}(2) \setminus P_{f(8TSI_1)}(2)|=161\),
\(|P_{f(8TSI_1)}(2) \setminus P_{f(6ZPU_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001010011000000001110001110100000100000011100010110001001001001010010000100110010010011111001000001110100000110100101001010101001110000000111110110001101110101001011001101010101100100100010100010011001011010101010011000011001010111110111011100100100111111011010000111001101001100100110011111111011000110010010011001011010010010100000101001111000110100110000111110011011100111011110100100100101100011000001011101110011111100110010101101010000000011010100011011110001010111010110011010011011101010011001110011100001000001100110110111001110110110101010101110010111011000001010011110001010010001111
Pair
\(Z_2\)
Length of longest common subsequence
6ZPU_1,8TSI_1
191
4
6ZPU_1,5LXS_1
148
5
8TSI_1,5LXS_1
167
4
Newick tree
[
8TSI_1:94.35,
[
6ZPU_1:74,5LXS_1:74
]:20.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{831
}{\log_{20}
831}-\frac{234}{\log_{20}234})=164.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZPU_1
8TSI_1
214
145
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]