Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZKV_1)}(2) \setminus P_{f(4QJF_1)}(2)|=152\),
\(|P_{f(4QJF_1)}(2) \setminus P_{f(6ZKV_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110011110111010101010001100001101000001100101000101011000101000001110110111101000110101111110110101100100101001110100101100000011000100110101111011110110101010100010010111001001111100101010010111101111010100011100101001010101111101111101001101001110101000111111011000001001101010100100100010111001100011110111001111111100011110010001110101110100111011111100000110111011010000001000100011011001110110101011010011010001010010111011111101110010101000100110000100110
Pair
\(Z_2\)
Length of longest common subsequence
6ZKV_1,4QJF_1
191
4
6ZKV_1,4EJF_1
174
3
4QJF_1,4EJF_1
177
3
Newick tree
[
4QJF_1:93.69,
[
6ZKV_1:87,4EJF_1:87
]:6.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{654
}{\log_{20}
654}-\frac{190}{\log_{20}190})=131.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZKV_1
4QJF_1
167
116.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]