Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZER_1)}(2) \setminus P_{f(4JGD_1)}(2)|=57\),
\(|P_{f(4JGD_1)}(2) \setminus P_{f(6ZER_1)}(2)|=111\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100101110110100110101100001000110001100010100100011010010010100101001110100100111100101100000110010101111000010001110000100110000101100010001001100100110110001110001101001110010011110101101110101100000
Pair
\(Z_2\)
Length of longest common subsequence
6ZER_1,4JGD_1
168
3
6ZER_1,1JUH_1
170
4
4JGD_1,1JUH_1
154
4
Newick tree
[
6ZER_1:86.85,
[
4JGD_1:77,1JUH_1:77
]:9.85
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{593
}{\log_{20}
593}-\frac{203}{\log_{20}203})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZER_1
4JGD_1
138
105.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]