Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YWS_1)}(2) \setminus P_{f(2PIQ_1)}(2)|=76\),
\(|P_{f(2PIQ_1)}(2) \setminus P_{f(6YWS_1)}(2)|=102\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101010100011101011100011010101111000000111100011011000000000111110110010011100110000110110001111100110011111000011010101100111001001101101111000011011111011100011001111000110111011001000011110110001001001011010010001101000111100100110001101111111100010000000
Pair
\(Z_2\)
Length of longest common subsequence
6YWS_1,2PIQ_1
178
3
6YWS_1,4OVU_1
216
4
2PIQ_1,4OVU_1
194
4
Newick tree
[
4OVU_1:10.80,
[
6YWS_1:89,2PIQ_1:89
]:17.80
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{509
}{\log_{20}
509}-\frac{251}{\log_{20}251})=73.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YWS_1
2PIQ_1
96
93
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]