Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YWO_1)}(2) \setminus P_{f(6IXF_1)}(2)|=128\),
\(|P_{f(6IXF_1)}(2) \setminus P_{f(6YWO_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001111000011001100010010100100010001000100010010001110011010000110010011000111001010111001011000000101010011001001011101100011001101001011110110101011001010001110000110001010001011111100100001100111110100001101111110100111111100000101100011100110011010111100000111111011010100100000010101101100100010011001101001100100110010000101101010011011101010000000111000001
Pair
\(Z_2\)
Length of longest common subsequence
6YWO_1,6IXF_1
182
4
6YWO_1,6DPQ_1
162
4
6IXF_1,6DPQ_1
184
4
Newick tree
[
6IXF_1:94.74,
[
6YWO_1:81,6DPQ_1:81
]:13.74
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{591
}{\log_{20}
591}-\frac{228}{\log_{20}228})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YWO_1
6IXF_1
132
104.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]